A New Integrated Lab-on-a-Chip System for Fast Dynamic Study of Mammalian Cells under Physiological Conditions in Bioreactor

نویسندگان

  • Janina Bahnemann
  • Negar Rajabi
  • Grischa Fuge
  • Oscar Platas Barradas
  • Jörg Müller
  • Ralf Pörtner
  • An-Ping Zeng
چکیده

For the quantitative analysis of cellular metabolism and its dynamics it is essential to achieve rapid sampling, fast quenching of metabolism and the removal of extracellular metabolites. Common manual sample preparation methods and protocols for cells are time-consuming and often lead to the loss of physiological conditions. In this work, we present a microchip-bioreactor setup which provides an integrated and rapid sample preparation of mammalian cells. The lab-on-a-chip system consists of five connected units that allow sample treatment, mixing and incubation of the cells, followed by cell separation and simultaneous exchange of media within seconds. This microsystem is directly integrated into a bioreactor for mammalian cell cultivation. By applying overpressure (2 bar) onto the bioreactor, this setup allows pulsation free, defined, fast, and continuous sampling. Experiments evince that Chinese Hamster Ovary cells (CHO-K1) can be separated from the culture broth and transferred into a new medium efficiently. Furthermore, this setup permits the treatment of cells for a defined time (9 s or 18 s) which can be utilized for pulse experiments, quenching of cell metabolism, and/or another defined chemical treatment. Proof of concept experiments were performed using glutamine containing medium for pulse experiments. Continuous sampling of cells showed a high reproducibility over a period of 18 h.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion.

Substantial progress has been achieved over the last few decades in the development of skin equivalents to model the skin as an organ. However, their static culture still limits the emulation of essential physiological properties crucial for toxicity testing and compound screening. Here, we describe a dynamically perfused chip-based bioreactor platform capable of applying variable mechanical sh...

متن کامل

A New Changeable Bioreactor for Detection of Organophosphate in a Flow-Through System

A flow-through biosensor consisting of a fixed bed bioreactor was employed to detect the insecticideparaoxon. Based on the inhibition of organophosphorous insecticide to the enzymatic activity of acetylcholinesterase (AChE), using paraoxon as a model compound, the condition for detection of the insecticide were optimized. The influence of enzyme loading on the packing surface was studied ...

متن کامل

Effect of Purification of Human Adipose-derived Mesenchymal Stem Cells on the Expression of vWF Cell Factor Under Chemical and Mechanical Conditions

Introduction: Human adipose-derived mesenchymal stem cells (hADSCs) are easily accessible in the body, and under appropriate conditions, they can be directed toward various phenotypes. Therefore, hADSCs have been considered as a potential cell source for tissue engineering applications. hADSCs are able to differentiate into endothelial cells which covers the interior surface of vessels, in vi...

متن کامل

I-8: Sperm Chemotaxis towards Progesterone,A Guiding Mechanism That May Be Used to Select The Best Spermatozoa for Assisted Reproduction

Background: Spermatozoa are able to sense an attractant molecule gradient and as a consequence, orient their movement towards the source of the attractant. This mechanism is known as sperm chemotaxis. In recent years, our laboratory contributed to the knowledge of several features of mammalian sperm chemotaxis. These include the size and physiological state of the chemotactic sperm population, ...

متن کامل

Biocompatible multi-address 3D cell assembly in microfluidic devices using spatially programmable gel formation.

Programmable 3D cell assembly under physiological pH conditions is achieved using electrodeposited stimuli-responsive alginate gels in a microfluidic device, with parallel sidewall electrodes enabling direct observation of the cell assembly. Electrically triggered assembly and subsequent viability of mammalian cells is demonstrated, along with spatially programmable, multi-address assembly of d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013